Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE If $\operatorname{det}(A)=0$, we need to use Gaussian elimination to determine if $A \vec{v}=\overrightarrow{0}$ has 0 or ∞ solutions.

Solution: The system of equations $A \vec{v}=\overrightarrow{0}$ always has the trivial solution as a solution which means that it has at least one solution. That means that if $\operatorname{det}(A)=0$, it has infinitely many solutions.
2. TRUE False If $\operatorname{det}(A)=0$, then 0 is an eigenvalue for A.

Solution: $\lambda=0$ solves $\operatorname{det}(A-0 I)=\operatorname{det}(A-0)=\operatorname{det}(A)=0$ so $\lambda=0$ is an eigenvalue.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (6 points) Let $A=\left(\begin{array}{ccc}0 & -1 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$. Calculate A^{-1} using Gaussian elimination.

Solution: Using Gaussian elimination

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
0 & -1 & 2 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{I \leftrightarrow I I}\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{I I I-I}\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right) \\
& \xrightarrow{I+I I}\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & 1 & 1 & 0 \\
0 & -1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right) \xrightarrow{I-2 I I I, I I-2 I I I}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 3 & -2 \\
0 & -1 & 0 & 1 & 2 & -2 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right) \\
& \xrightarrow{I I \cdot(-1)}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 3 & -2 \\
0 & 1 & 0 & -1 & -2 & 2 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right)
\end{aligned}
$$

So the inverse is $\left(\begin{array}{ccc}1 & 3 & -2 \\ -1 & -2 & 2 \\ 0 & -1 & 1\end{array}\right)$.
(b) (1 point) Let $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$. Find the matrix B that such that $\vec{y}^{\prime}=B \vec{y}$ given

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
y_{2}^{\prime}(t)=y_{1}(t)
\end{array}\right.
$$

Solution: $B=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)$
(c) (3 points) Find the eigenvalues and eigenvectors of the matrix B found above.

Solution: We have to look at $\operatorname{det}(B-\lambda I)=(1-\lambda)(-\lambda)-2=\lambda^{2}-\lambda-$ $2=(\lambda-2)(\lambda+1)$. Thus the eigenvalues are $\lambda=-1,2$. For $\lambda=-1$, we have $B-\lambda I=\left(\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right)$ and so an eigenvector is $\binom{2}{-2}$. For $\lambda=2$, we have $B-\lambda I=\left(\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right)$ so an eigenvector is $\binom{2}{1}$.

